Acta Cryst. (1971). B27, 602

Sur une Déformation Inédite du Réseau de Type Fluorine. Structure Cristalline des Phases MTe₃O₈ (M=Ti, Sn, Hf, Zr)

PAR GEORGES MEUNIER ET JEAN GALY

Service de Chimie Minérale Structurale de la Faculté des Sciences de Bordeaux associé au C.N.R.S., 351, cours de la Libération, 33-Talence, France

(Recu le 20 avril 1970)

 $TiTe_3O_8$, $SnTe_3O_8$, $HfTe_3O_8$ and $ZrTe_3O_8$ are cubic with $a_{T1} = 10.956$, $a_{Sn} = 11.144$, $a_{Hf} = 11.291$ and $a_{\rm Zr} = 11.308$ Å and the space group Ia3. The structure has been determined on a TiTe₃O₈ single crystal. The cations form an ordered f.c.c. subcell. The titanium atom has an octahedral coordination and the tellurium atom is surrounded as in paratellurite TeO₂. The structural relations with the fluorite array have been established. The SnTe₃O₈, HfTe₃O₈ and ZrTe₃O₈ structures determined from powder patterns are isostructural with that of $TiTe_3O_8$.

L'étude des systèmes TeO2-MO2, où M peut être le titane, l'étain, le hafnium ou le zirconium, permet de mettre en évidence des phases originales de formule MTe₃O₈ et de symétrie cubique. Bayer (1962, 1969) a préparé trois d'entre elles (M=Ti, Sn, Zr), pour lesquelles il suggère une structure voisine de celle de In_2O_3 , c'est-à-dire de la variété C des oxydes de terres rares (Zachariasen, 1928; Pauling & Shappell, 1930). Déterminant les températures de fusion et d'ébullition de ZrTe₃O₈, Sorrell (1968) a jugé préférable d'envisager une structure de type fluorine.

Nous avons pu montrer que ces phases, bien que présentant d'incontestables similitudes structurales avec les structures envisagées, en particulier celle de la fluorine, constituaient en fait une famille d'un type structural inédit (Galy & Meunier, 1969).

Préparation et identification des phases MTe₃O₈

Les phases MTe_3O_8 (M = Ti, Sn, Hf, Zr) ont été préparées à partir de mélanges en quantité stoechiométrique d'oxydes TeO₂ et MO₂ finement pulvérisés:

$$3 \text{TeO}_2 + \text{MO}_2 \rightarrow \text{MTe}_3 \text{O}_8$$

On opérait soit en tube scellé de vycor, soit sous pression d'oxygène de $\frac{1}{5}$ d'atmosphère. Deux traitements thermiques de 12 heures séparés par un broyage étaient effectués à 700°C.

L'oxyde de tellure de départ était obtenu par dégradation thermique à 600°C de l'acide orthotellurique:

$$H_6TeO_6 \rightarrow TeO_2 + 3H_2O + \frac{1}{2}O_2^{\cancel{A}}$$

Les spectres de poudre des phases MTe_3O_8 sont don-

nés à la Fig. 1. Ils s'indexent dans le système cubique centré. Les données cristallographiques relatives aux divers composés sont rassemblées au Tableau 1. Les paramètres varient de manière continue en fonction de la taille du cation M⁴⁺, comme l'indique la Fig. 2.

La fusion du composé TiTe₃O₈ (T_F=846°C) suivie d'un refroidissement lent nous a permis d'obtenir des monocristaux. Le monocristal choisi pour l'étude structurale se présentait sous forme d'un petit cube de 0,025 mm d'arête.

Structure cristalline de TiTe₃O₈

L'examen des diagrammes de Laue confirme la symétrie cubique. Les réflexions hk0, hk1, hk2, hk3 et hk4

Fig. 2. Evolution du paramètre a en fonction de M4+.

Tableau 1. Données cristallographiques des phases MTe₃O₈

М	Ti	Sn	$\mathbf{H}\mathbf{f}$	Zr
а	10,956±0,003 Å	11,144 ± 0,003 Å	11,291±0,003 Å	11,308 ± 0,003 Å
d	$5,64 \pm 0,02$	$6,02 \pm 0,02$	6,32 <u>+</u> 0,02	5,50 <u>+</u> 0,02
d_x	5,65	6,04	6,36	5,53
Ζ	8	8	8	8

 $A = CaF_2$; $B = TiTe_3O_8$; $C = SnTe_3O_8$; $D = HfTe_3O_8$; $E = ZrTe_3O_8$. Fig. 1. Spectres X des phases MTe₃O₈ (Cu Ka).

ont été enregistrées à l'aide d'une chambre de Weissenberg munie d'un dispositif d'intégration (rayonnement Cu K α). L'intensité diffusée par les divers plans hkl a été mesurée sur les films à l'aide d'un microdensitomètre. Les intensités mesurées ont été corrigées des facteurs de Lorentz-polarisation et d'absorption ($\mu R =$ 1,5). Les facteurs de diffusion du titane, du tellure et de l'oxygène se déduisent des valeurs données par *International Tables for X-ray Crystallography* (1965). Tous les calculs ont été réalisés sur IBM 1130 (Programmes M. Saux et J. Galy).

Détermination de la structure

Les règles d'existence des réflexions relevées sur les clichés de Weissenberg sont les suivantes:

$$\begin{array}{ll} hkl & h+k+l=2n \\ hk0 & h=2n \quad (k=2n) \bigcirc . \end{array}$$

Elles impliquent pour la symétrie cubique le groupe spatial T_h^7 , *Ia3*. L'indexation des spectres de poudre se trouve confirmée (Tableaux 2, 6, 7 et 8).

Fig. 3. Ordre des cations M^{4+} et Te⁴⁺ dans la sous-maille de type fluorine.

Fig. 4. Projection de la structure de TiTe₃O₈ sur le plan (001) (Cotes $z \times 100$).

Fig. 5. Environnement oxygéné du tellure (distances en Å).

Tableau 2. Indexation et distances réticulaires $de TiTe_2O_2$

				- 0	
h	k	l	$d_{\rm obs}$	dcale	Ι
2	0	0	5,47	5,48	tf
2	1	1	4,47	4,48	Ě
2	2	0	3,873	3,874	tf
2	2	2	3,162	3,163	ŤTF
3	2	1	2,927	2,928	т
4	0	0	2,739	2,739	F
4	1	1	2,582	2,582	т
4	2	0	2,450	2,450	f
3	3	2	2,336	2,336	<i>tf</i>
4	2	2	2.236	2.236	if
4	3	1	2,149	2,149	ŕ
5	2	1	2.000	2.000	<i>f</i> f
4	4	Ō	1.937	1.937	F
4	3	3	1.879	1.879	f
4	4	2)	1.00	1.000	<i>tf</i>
6	0	ίO	1,826	1,826	.,
5	3	2 1	1 777	1 222	f
6	1	1	1,///	1,///	2
6	2	0	1.732	1.732	f
5	4	1	1,690	1,691	f
6	2	2	1.651	1,652	m
6	3	1	1.615	1,615	f
4	4	4	1,581	1,581	f
5	4	3	1,549	1,549	f
6	4	0	1,519	1,519	<i>if</i>
	h 2222344434454446566566456	$\begin{array}{c} h \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Nous avons joint à la Fig. 1 le spectre X de CaF₂ $(a_{CaF_2}=5,4626 \text{ Å})$. On constate que les raies de CaF₂ coïncident pratiquement avec quelques-unes des raies

les plus intenses de TiTe₃O₈. Il nous a donc paru raisonnable d'en déduire la structure à partir d'une sousmaille de type fluorine de paramètre $a' = a_{\text{TiTe}_3O_8}/2$. Le titane était placé au sommet de ce cube et le tellure au milieu des faces (Fig. 3): la répétition de ce motif conduit à une maille de type centré huit fois plus grande. Dans la maille réelle (groupe spatial *Ia*3) le titane et le tellure occupent des positions particulières à 8, 8(*a*), et 24 équivalents, 24(*d*) respectivement en accord avec la formulation TiTe₃O₈ (rapport Ti/Te = $\frac{1}{3}$).

Les 64 atomes d'oxygène ont été répartis dans deux positions cristallographiques: l'une à 48 équivalents, 48(e), l'autre à 16 équivalents, 16(c). Les cotes choisies pour ces anions permettaient de reconstituer autour des atomes de titane et de tellure un polyèdre de coordinence cubique.

Plusieurs cycles d'affinement utilisant une méthode de moindres carrés ont alors été entrepris.

Le facteur de confiance a été finalement abaissé jusqu'à la valeur R=0,054 pour les 238 réflexions *hkl* observées.

Les coordonnées réduites et les paramètres d'agitation thermique sont donnés au Tableau 3. Les distances interatomiques Ti-O et Te-O, ainsi que les principaux angles de liaison O-Te-O sont portés au Tableau 4.

Le Tableau 5 groupe les valeurs des facteurs de structure observés et calculés.

Fig. 6. Enchaînement des polyèdres de coordinence du Ti et du Te dans un plan de cote $\frac{1}{2}$.

Tableau 3.	Coordonnées	atomiques	et facteurs d	l'agitation	thermique	pour les	s composés	MTe ₃ O ₈
------------	-------------	-----------	---------------	-------------	-----------	----------	------------	---------------------------------

(M = Ti, Sn, Hf, Zr)

Composés	Atomes	x	у	z	В	Position	Facteur de reliabilité
TiTe ₃ O ₈	Ti	0	0	0	0.57 Å ²	8 (a)	
	Te	0,2101	0	1	0,75	24 (d)	5,4%
	O(1)	0,440	0,133	0.396	1,40	48 (e)	
	O(2)	0,175	0,175	0,175	0,86	16 (c)	
SnTe ₃ O ₈	Sn	0	0	0	0,56	8 (a)	
	Te	0,2058	0	7	0,54	24 (d)	2,9
	O(1)	0,434	0,137	0,399	1,24	48 (e)	
	O(2)	0,167	0,167	0,167	0,89	16 (c)	
HfTe ₃ O ₈	Hf	0	0	0	0,75	8 (a)	
	Te	0,2066	0	7	0,47	24 (d)	5,2
	O(1)	0,435	0,134	0,396	1,77	48 (e)	,
	O(2)	0,170	0,170	0,170	1,38	16 (c)	
ZrTe ₃ O ₈	Zr	0	0	0	0,79	8 (a)	
	Te	0,2071	0	1	0,66	24 (d)	4,8
	O(1)	0,433	0,133	0,401	1,70	48 (e)	
	O(2)	0,168	0,168	0,168	1,53	16 (c)	

Tableau 4. Composés MTe_3O_8 (M = Ti, Sn, Hf, Zr)

	Distances	interatomiques	s en Å (erreur n	naximum ±0,02	2 Å)	
	TiTe ₃ O ₈	SnTe ₃ O ₈	HfTe ₃ O ₈	$ZrTe_3O_8$	TeO ₂ *	TeO ₂ †
M-O	1,966	2,03 ₂	2,061	2,017		
Te-O(5)	2,927	2,929	2,99 ₂	2,96 8	2,89	
Te-O(6)	1,850	1,866	1,891	1,95	1,91	1,90
Te-O(7)	2,121	2,124	2,159	2,159	2,09	2,08
	Angles de liaiso	ons principaux	O-Te-O (erreu	r maximum ±1	l°5)	
	TiTe ₃ O ₈	$SnTe_3O_8$	Hf Te ₃ O ₈	ZrTe ₃ O ₈	TeO ₂ *	TeO ₂ †
O(6)-Te-O(9)	102.2°	102.9°	104.9°	102.5°	90,9°	102,0°
O(7)–Te–O(8)	159,2	156,8	157,6	156,3	162,6	168,5
	*L †L	eciejewicz (196 undquist 1968	1)			

Description de la structure

La projection de la structure sur le plan xOy est représentée à la Fig. 4.

L'atome de titane est au centre d'un octaèdre régulier dont les sommets sont occupés par des atomes d'oxygène.

Tableau 5. Comparaison entre facteurs de structure observés et calculés pour TiTe₃O₈

r	۲	L	FC	FC	н	r.	ι	FC	FC		۲	٤	50	£C.
12122000082888666666666666666222222000001111000000	C . 2024208c4202026420852020852020842864975310 1185202085420852020852020852020852020852020852020852020852085		$\begin{array}{c} 3 \\ 2 \\ 1 \\ 4 \\ 5 \\ 0 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	-14.8 -1	0 9 7 7 8 8 7 8 8 8 7 7 7 7 7 7 6 6 6 6 6 6	86421975310864219753108643197531208642315310		0.06753533.86922243710.066504209901122426923003502 11111253353522243710.0665042099011224259250224003502 112222522222222222222222222222222222	12(1) 13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8* 4?16%203186%2075386&201531206%205167512086		718705606407407556005760057750007655584354	
"	ĸ	L	FO	FC	н	ĸ	ι	FO	FC	н	ĸ	ι	FO	FC
222111111100000000000000000000000000000	820319731208827510820755220882297531	************************************	8,02,23,5 90.02,53,5 4,11,55 4,11,13,15 1,1,0,2,53,5 1,1,2,2,4 1,1,2,2,4 1,1,1,3,1,5 1,1,2,5,5 1,2,5,5,5 1,2,5,5,5 1,2,5,5,5 1,2,5,5	- 4. - 4. - 4. - 4. - 4. - 7. - 7. - 7. - 7. - 7. - 7. - 7. - 7	55554444453353222022223228777722555	8642107531086419753108647676753182107	333333333333333333333333333333333488666666	10.01734.04290039547.150076.38 11111.2283.04290039547.150076.38 120.00397.150.35.38 10.00397.150.35.35.35.35.35.35.35.35.35.35.35.35.35.	14-777-8 	5554444444333339977777797911.11.11.44.0000	531208-2010753120 Coline 120 75% -10 Colin	医海南部有部分病 医马克氏氏白色白色白色白色白色白色白色白色白色白色白色白色白色白色白色白色白色白色白		17.2

Fig. 7. Enchaînement des polyèdres de coordinence du Te dans un plan de cote $\frac{1}{4}$.

Autour de l'atome de tellure, six atomes d'oxygène forment un octaèdre très distordu, comme l'illustre la Fig. 5. Mais deux atomes d'oxygène [O(1) et O(5)] sont nettement plus éloignés du tellure que les autres [Te-O(1)=Te-O(5)=2,93 Å], aussi peut-on considérer l'atome de tellure comme essentiellement lié aux quatre atomes d'oxygène O(6), O(7), O(8) et O(9). Deux de ces liaisons mesurent 1,85 Å, les deux autres 2,12 Å.

Deux sortes de plans cationiques alternent au sein du réseau:

 - l'un contenant des atomes Ti et Te en nombre égal, chaque Ti étant entouré de 4 Te et réciproquement;

- l'autre contenant uniquement des atomes Te. Les Figs. 6 et 7 illustrent la manière dont s'enchaînent les polyèdres de coordinence du titane et du tellure ou simplement du tellure dans ces deux types de plans.

Structure cristalline de SnTe₃O₈, HfTe₃O₈ et ZrTe₃O₈

Détermination des structures

L'examen des spectres de poudre des diverses phases MTe_3O_8 (Fig. 1) laissait supposer qu'elles étaient isostructurales.

Les structures cristallines ont été déterminées à partir des intensités des raies du spectre de poudre enregistrées à l'aide d'un spectrogoniomètre Philips (Cu $K\alpha$).

Les calculs d'affinement ont été effectués sur IBM 1130 à l'aide d'un programme spécial mis au point par G. Perez et M. Saux (à paraître).

Tableau 6. Indexation, distances réticulaires et facteurs de structure observés et calculés de SnTe₃O₈

h k l	d obs	dcalc	F ₂	IF	hkl	dobs	dcalc	F	IF _c 1
200	5,57	5,57	20	22	851)				
211	4,55	4,55	111	119	754)	1,175	1,175	163	157
222	3,218	3,217	313	329	932)	1 150	1 140	1.82	1 1 0 4
321	2,978	2,978	144	150	763)		1,147	102	104
400	2,786	2,786	211	214	844	1,137	1,137	112	112
420	2 401	2,027	152	154	941	1,126	1,126	156	161
332	2.376	2.376	50	33	10 0 01		1		Į
422	2,275	2,275	70	70	860	1,114	1,114	214	219
431	2,186	2,186	146	149	862)	1 00 2	1 002	210	120
521	2,035	2,035	110	99	1020)	1,095	1,095	319	320
440	1,971	1,970	320	316	943	1,082	1,082	133	127
433	1,911	1,911	153	152	666	1,073	1,072	165	176
6005	1,857	1,857	86	78	9521		[
532)					10 3 1	1,063	1,063	164	164
611)	1,808	1,808	104	161	765)		Į		
620	1,762	1,762	129	122	871				
541	1,720	1,720	175	177	855	1,044	1,044	161	161
631	1,643	1,000	187	184	10 4 0)				
444	1.608	1.608	166	167	864)	1,035	1,035	278	287
543	1,575	1,576	177	183	961)	1 076	1 026		
640	1,545	1,545	152	157	1033)	1,020	1,020	141	140
552					10 4 2	1,018	1,017	228	236
721	1,516	1,517	165	168	873	1,009	1,009	162	164
642	1.489	1.489	214	204	963)				
651)	1 415		220		11 2 1)	0,9930.	0,9928	142	145
732)	1,415	1,415	229	229	1051)				
800	1,393	1,393	137	137	10 4 4	0.9703	0.9700	184	166
741	1 272	1 199	225	225	882)				
554	1,512	1,512	225	22.5	972				
820)					11 3 2	0,9629	0,9627	137	130
644)	1,351	1,351	219	218	776)				
653	1,332	1,332	167	169	1060)	0.9557	0.9556	168	169
660	1,313	1,313	180	182	866)				
8311					875	0,9487	0,9486	168	158
743	1,296	1,295	190	183	965	0.9350	0,9352	138	131
662	1,278	1,278	161	164	974)		.,,		
752	1,261	1,262	95	88	1211)	0.9224	0.9223	185	202
840	1,246	1,246	205	211	11 4 3	.,	0,7003		202
833	1,231	1,231	101	85	481)			i	
921)	1,210	1,210	164	164	1220	0,9160	0,9160	170	169
761	1,202	1,202	191	189					
0 2 2 }				·					

Tableau 7. Indexation, distances réticulaires et facteurs de structure observés et calculés de HfTe₃O₈

hkl	d.	d .,	F.	IF.I	b k l	d	d ,	F.	IF-1
200	<u>-oba</u>	Calc	- 0	= 1	0 2 2)	-obs	<u>calc</u>	- 0	
211	4,61	4,61	112	120	763	1,165	1,165	190	185
220	3,993	3,992	43	59	844	1,153	1,152	168	169
222	3,261	3,259	362	362	853)		.,		,
321	3,017	3,018	150	154	941)	1,140	1,141	151	167
400	2,824	2,823	255	254	860)	1 1 20	1 1 20	225	240
411	2,660	2,661	154	1 52	1000)	1,129	1,129	235	248
420	2,525	2,525	108	115	862)	1 107	1 107	377	367
332	2,406	2,407	44	30	1020)	.,	1,107	511	507
422	2,305	2,305	104	135	943	1,097	1,097	119	134
431	2,214	2,214	147	152	10 2 2	1,087	1,086	211	228
440	1 996	1 996	359	362	10 2 1 1				
433	1,936	1,936	160	147	765	1 077	1 077	166	166
600)	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			952	1,0//	1,071	100	100
442)	1,882	1,882	147	138	871)				
532)	1 021	1 022	166	160	774)	1,058	1,057	176	164
611)	1,051	1,032	100	100	855)		-		[]
620	1,785	1,785	129	124	1040)	1 049	1 048	314	345
541	1,742	1,742	176	178	864)	1,047	1,010	3.14	540
622	1,702	1,702	434	421	10 3 3	1,040	1.039	142	146
031	1,004	1,005	200	205	901/	1.000	1 0.21	241	200
543	1,000	1,597	177	181	873)	1,031	1,031	201	200
640	1.566	1.566	193	199	954	1,022	1,022	173	164
552)		.,			1051)			ļ	
633)	1,536	1,537	175	165	963)	1,006	1,006	149	154
721)					11 2 1)				
642	1,509	1,509	242	242	882)	0.9828	0.9828	201	209
732	1,434	1,434	238	230	1044)	-,,,	0,,,010		207
651)		1	144	142	10 5 3 }	}			
7 4 1)	1,412	1,411	104	105	11 2 2	0,9754	0,9754	133	138
811	1.390	1.390	2.32	229	776	Į		1	ļ
554					866)				
820)					1060	0,9683	0,9682	206	188
644)	1,370	1,309	208	255	875)	0.000	0.000	1.00	1.00
653	1,349	1,350	169	173	1141)	0,9612	0,9611	152	140
660}	1.331	1.331	220	227	1062	0,9544	0,9543	163	166
822)] .,				965	0,9479	0,9475	145	133
7 4 3	1,313	1,313	185	189	1200}	0,9410	0.9409	141	128
662	1.295	1,295	211	219					1
840	1,262	1,262	244	266	974	0.9346	0.9345	183	203
833	1,247	1,247	126	94	981		}		
7611	1,233	1,232	205	181	12 2 0	0.9283	0.9281	187	181
9215	1,218	1,218	187	196	1222)	0.0160	0.0150	250	241
655)	1	1			1064)	0,4128	0,9128	458	201
851)	1,204	1,204	117	91				ł	
754	1,190	1,190	1 169	155	1	i i	1	í	1
L					L	L	L	1	1

Les faibles valeurs des facteurs de confiance $R_{\text{SnTe}_3O_8} = 0,029$, $R_{\text{HfTe}_3O_8} = 0,052$ et $R_{\text{ZrTe}_3O_8} = 0,048$ justifient les coordonnées réduites et les facteurs d'agitation thermique groupés au Tableau 3. Les distances interatomiques sont données au Tableau 4.

Les Tableaux 6, 7 et 8 groupent les distances réticulaires avec leurs indexations et les facteurs de structure observés et calculés pour les phases $SnTe_3O_8$, $HfTe_3O_8$ et $ZrTe_3O_8$.

Ces résultats montrent sans ambiguïté que tous ces composés sont isostructuraux.

Relations structurales entre MTe₃O₈ et CaF₂

La répartition des cations Ti et Te au sein de la sousmaille cubique de paramètre $a' = a_{\rm MTe_3O_8}/2$ est pratiquement identique à celle du calcium dans la structure de type fluorine (Fig. 3); elle explique la présence dans le spectre X des composés MTe₃O₈, de raies caractéristiques du réseau CaF₂. L'alternance des plans [Ti + Te] et [2Te] implique de plus le doublement du paramètre : nous avons pu constater que $a_{\rm MTe_3O_8}$ est sensiblement le double de $a_{\rm CaF_2}$.

Le réseau anionique subit par contre une distorsion considérable. La Fig. 8 montre le processus de distorsion de l'environnement cubique oxygéné du titane en un environnement octaédrique. Deux atomes d'oxygène diagonalement opposés du cube anionique fictif de départ (Figure en pointillés) s'éloignent de l'atome de titane, alors que les six autres s'en rapprochent.

Pour les atomes de tellure le mécanisme de déformation du réseau anionique est très différent (Fig. 9): quatre atomes d'oxygène d'une même face du cube se déplacent vers son centre, le tellure se rapprochant d'ailleurs de cette face. Sur la face opposée du cube considéré, deux atomes d'oxygène diagonalement opposés

Fig. 8. Environnement du titane.

Fig.9. Environnement du tellure.

se rapprochent eux aussi du centre du cube, mais moins fortement que les précédents (ils correspondent aux deux très longues distances Te-O=2,93 Å). Les deux autres atomes d'oxygène s'écartent totalement du polyèdre de coordinence.

Discussion

La coordinence octaédrique est usuelle pour le titane et l'étain. Les distances interatomiques M-O obtenues pour ces deux éléments sont en bon accord avec les données antérieures (Ti-O=1,96, Sn-O=2,05 Å dans *International Tables for X-ray Crystallography* (1965).

Dans le cas du zirconium et du hafnium, cette coordinence est plus inhabituelle: dans les variétés basse température de ZrO_2 et de HfO_2 la coordinence du cation est égale à 7 (McCullough & Trueblood, 1959; Adam & Rogers, 1959); dans leurs variétés haute température de type CaF_2 la coordinence devient égale à 8. On a toutefois observé une coordinence octaédrique dans les phases $ZrTiO_4$, $HfTiO_4$ (Newnham, 1967; Harari, Bocquet & Collongues, 1967), ZrP_2O_7 (Levy & Peyronel, 1935). Dans ZrP_2O_7 la distance Zr-O est de l'ordre de 2,02 Å et dans $HfTiO_4$ la distance Hf-O moyenne est de 2,08 Å. Nos valeurs sont en bon accord avec ces données (Tableau 4).

La coordinence du tellure dans les phases étudiées est identique; les distances Te-O et les angles de liaison O-Te-O sont similaires comme le montre le Tableau 4.

Nous pouvons rapprocher ce polyèdre de coordination de celui mis en évidence par Leciejewicz (1961) et Lindquist (1968) dans la paratellurite TeO₂.Les résul-

Fig. 10. Hybridation du tellure.

Tableau 8. Indexation, distances réticulaires et facteurs de structure observés et calculés de ZrTe₃O₈*

h k l	d _{obs}	dcalc	Fo	Fc	b k l	dobs	dcalc	Fo	Fc
211	4,61	4.62	118	114	10 2 2 1				
222	3,264	3,264	300	312	666)	1,088	1,088	168	154
321	3,021	3,022	141	146	1031)		1	}	}
400	2,827	2,827	200	199	765)	1,078	1,078	148	164
411	2,665	2,665	153	152	952)	1			
420	2,530	2,529	98	94	8/1	1. 050			1
431	2,219	2,218	151	145		1,059	1,059	175	165
440	2,000	1 999	294	200	1040)				
433	1.939	1.939	155	150	864	1,050	1,050	249	240
532,					10 3 3)				
611)	1,834	1,834	162	163	961)	1,041	1,041	149	138
620	1,788	1,788	124	128	1042	1,032	1,032	244	223
541	1,746	1,745	173	176	873)	1.023	1 024	184	165
622	1,705	1,705	321	329	954)	.,	.,	1.01	
631	1,668	1,667	190	182	10 5 1				
444	1,632	1,632	159	155	,,,,,(1,007	1,007	150	146
640	1,599	1,599	171	179	882)	1			
5521	1,500	1,000	123	120	10 4 4	0,9845	0,9842	156	141
633	1.539	1.539	166	168	10 5 3	1			
721					972)	0 0220	0.07/0		1.20
642	1,511	1,511	182	177	11 3 2)	0.9110	0,9769	141	130
651)	1 4 7 6	1 476	225	224	776)				
732)	1,450	1.450		224	866)	0.9698	0.9697	143	135
800	1,414	1,414	122	125	1060)				
741	1 202	1 202	227	210	976	0,9627	0,9626	142	157
6 6 4 (1,393	1,392	221	210	965	0 9490	0 0480	1 1 1 1	120
8201					1211)	0,7470	0,,10,		129
644	1,371	1,371	202	195	11 4 3				
653	1,352	1,352	163	168	981)	0,9361	0,9359	178	195
822)	1 222	1 222	1.2.2	140	974)				
660	1,355	1,555	1,,,	140	1220	0,9297	0,9295	173	167
831)	1.314	1.315	190	186	1222	0.9175	0.9172	188	185
743)					1064)				,
662	1,297	1,297	161	162	1242	0 0011	0 0 0 2 0	247	2-2
840	1,264	1,264	191	192	886	0,8831	0,8830	247	2.52
847	1 2 34	1,249	170	160	10.8.2	0.8726	0.8724	226	249
761)	.,,.	.,			1260)	0 8427	0 9439	270	2.7.2
921	1,220	1,219	175	187	1084)	0,0427	0,8428	2.0	275
555) 851)					1262	0,8339	0,8336	208	205
754	1,192	1,192	145	158	11 7 4	0,8292	0,8291	154	159
763)	1,166	1,166	175	180	1341)			ł	
8531					1264	0,8078	0,8077	170	174
941	1,142	1,142	165	162	1400)				
860)	1,132	1,131	185	194	10 8 6	0,7996	0,7996	183	189
862									
1020)	1,109	1,109	290	283				1	

*Au lieu de F_c lire $|F_c|$.

tats de ces auteurs, reportés au Tableau 4, permettent de comparer les distances Te-O et les angles de liaison O-Te-O dans TeO₂ et les phases MTe_3O_8 . En dépit de la présence de cations aussi différents que Ti, Sn, Hf et Zr, le polyèdre de coordinence du tellure n'est que peu affecté.

Le tellure est situé au-dessus du plan distordu formé par les quatre atomes d'oxygène auxquels il est lié (Figs. 5 et 10). Cette coordinence peut s'expliquer par l'interaction du doublet non engagé du tellure(IV). La Fig. 10 représente le polyèdre de coordinence du tellure, qui peut être assimilé à une bipyramide à base triangulaire. Deux atomes d'oxygène sont situés aux sommets du triangle équilatéral. Le doublet non engagé qui est de type sp^2 avec prédominance du caractère s (angle O(6)-Te-O(9) intermédiaire entre 90 et 120°) est dirigé vers le troisième sommet. Les deux autres atomes d'oxygène occupent les sommets de la bipyramide par l'intermédiaire de l'orbitale p_z du tellure dont la déformation s'explique par la répulsion due au doublet non engagé.

Un environnement voisin se rencontre dans la variété quadratique de PbO (Moore & Pauling, 1941), ce qui souligne le caractère s du doublet non engagé.

L'existence du doublet explique l'éloignement des atomes O(1) et O(5) à des distances de l'ordre de 2,90 Å dans les phases MTe₃O₈.

Références

- ADAM, J. & ROGERS, M. D. (1959). Acta Cryst. 12, 951.
- BAYER, G. (1962). Ber. dtsch. Keram. Ges. 39, 535.
- BAYER, G. (1969). Fortschr. Miner. 46 (1), 41.
- GALY, J. & MEUNIER, G. (1969). C.R. Acad. Sci. Paris, 268, 1249.
- HARARI, A., BOCQUET, J. P. & COLLONGUES, R. (1967). C.R. Acad. Sci. Paris, 267, 1316.
- International Tables for X-ray Crystallography (1965). Vol. III. Birmingham: Kynoch Press.
- LECIEJEWICZ, J. (1961). Z. Kristallogr. 116, 345.

- LEVY, G. R. & PEYRONEL, G. (1935). Z. Kristallogr. 92A, 190.
- LINDQUIST, O. (1968). Acta Chem. Scand. 22, 977.
- McCullough, J. D. & Trueblood, K. N. (1959). Acta Cryst. 12, 507.
- MOORE, W. J. & PAULING, L. (1941). J. Amer. Chem. Soc. 63, 1392.
- NEWNHAM, R. E. (1967). J. Amer. Chem. Soc. 4, 50.
- PAULING, L. & SHAPPELL, M. D. (1930). Z. Kristallogr. 75, 128.
- SORRELL, C. A. (1968). J. Amer. Ceram. Soc. 51 (12), 674. ZACHARIASEN, (1928). Z. Kristallogr. 67, 455.

Acta Cryst. (1971). B27, 608

A Propos de la Cliffordite UTe₃O₈. Le Système UO₃-TeO₂ à 700°C. Structure Cristalline de UTe₃O₉

PAR JEAN GALY ET GEORGES MEUNIER

Service de Chimie Minérale Structurale de la Faculté des Sciences de Bordeaux associé au C.N.R.S., 351, cours de la Libération, 33-Talence, France

(Reçu le 11 juin 1970)

Two phases have been found in the UO₃-TeO₂ system at 700°C: UTeO₅ and UTe₃O₉. UTeO₅ is orthorhombic with space group *Pbc2*₁ or *Pbcm* and parameters a=5.363, b=10.611, c=7.862 Å (Z=4). UTe₃O₉ is cubic with space group *Pa3* and a=11.370 Å (Z=8). The structure of UTe₃O₉ has been determined. The tellurium and uranium atoms have C.N. 4 and 8 (with a linear UO₂²⁺ group). The structure appears to be identical with that of the cliffordite previously reported with formula UTe₃O₈.

Nous avons entrepris au laboratoire l'étude systématique de nouvelles familles de composés oxygénés du tellure(IV). C'est ainsi qu'à été préparée une série de composés originaux de formule MTe₃O₈ (M=Ti, Zr, Hf, Sn) dont la structure a été déterminée (Galy & Meunier, 1969; Meunier & Galy, 1971). Cette étude nous a amené à nous intéresser au système UO₂-TeO₂. En fait l'oxyde UO₂ réduit TeO₂ avec formation de UO₃ et de tellure élémentaire. Cette constatation nous a conduit à l'étude du système UO₃-TeO₂.

Alors que nos travaux étaient déjà assez avancés, nous avons eu connaissance d'une étude structurale de Fischer, Schlatti & Zemann (1969), intitulée: *The structure type of cliffordite* UTe₃O₈. La cliffordite est un minerai existant dans les mines de San Miguel près de Moctezuma au Mexique; il a été découvert et étudié par Gaines (1969), qui lui a attribué la formule UTe₃O₈, soit U⁴⁺Te⁴₃+O₈. Cet auteur affirmait avoir obtenu des monocristaux de cliffordite par synthèse sous pression. C'est sur un tel monocristal que Fischer *et al.* ont précisément effectué l'étude cristallographique annoncée.

Khodadad (1962) avait préparé par action de l'acétate d'uranyle sur une solution chlorhydrique de TeO_2 une tellurate d'uranyle (UO₂)TeO₃, correspondant donc à la formule brute U⁶⁺Te⁴⁺O₅. Il donnait les raies principales du spectre Debye-Scherrer et en étudiait la décomposition thermique.

Etude chimique et radiocristallographique du système UO₃-TeO₂

L'oxyde de tellure TeO_2 de départ est obtenu par décomposition de l'acide orthotellurique sous courant d'oxygène à 600°C. UO₃ est un produit commercial.

Les réactions de préparation sont effectuées en tube scellé de vycor à 700 °C. Une étude systématique par diffraction X a permis d'isoler deux phases correspondant à des rapports TeO_2/UO_3 égaux à 1 et 3, soit $UTeO_5$ et UTe_3O_9 .

Les spectres X de ces phases sont donnés à la Fig. 1.

La phase UTeO₅

UTeO₅ est une poudre cristalline de couleur jaune. Un monocristal de cette phase a été obtenu par fusion à 800°C suivie d'un refroidissement lent. L'étude radiocristallographique effectuée à l'aide de chambres de Bragg et de Weissenberg a permis d'en préciser les caractères cristallographiques. UTeO₅ cristallise dans le système orthorhombique. Les paramètres, affinés par indexation d'un diffractogramme préalablement calibré avec la poudre de germanium, sont: $a=5,363\pm0,003$,